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ABSTRACT

Novel phenomena andmethods related to dielectronic capture and dielectronic recombination are studied for non-local thermodynamic equilibrium
(LTE) plasmas and for applications to non-LTE ionization balance. It is demonstrated that multichannel autoionization and radiative decay strongly
suppress higher-order contributions to the total dielectronic recombination rates, which are overestimated by standard approaches by orders of
magnitude. Excited-state coupling of dielectronic capture is shown to be much more important than ground-state contributions, and electron
collisional excitation is also identified as a mechanism driving effective dielectronic recombination. A theoretical description of the effect of angular-
momentum-changing collisions on dielectronic recombination is developed from an atomic kinetic point of view and is visualized with a simple
analytical model. The perturbation of the autoionizing states due to electric fields is discussed with respect to ionization potential depression and
perturbation of symmetry properties of autoionizationmatrix elements. Thefirst steps in the development of statisticalmethods are presented and are
realized in the framework of a local plasma frequency approach. Finally, the impact of collisional–radiative processes and atomic population kinetics
on dielectronic recombination is critically discussed, and simple analytical formulas are presented.

©2020Author(s). All article content, exceptwhere otherwisenoted, is licensedunderaCreativeCommonsAttribution (CCBY) license (http://creativecommons.org/
licenses/by/4.0/). https://doi.org/10.1063/5.0014158

I. INTRODUCTION

Atomic populations are of fundamental importance in a variety
of areas in both pure and applied science. Examples include the
equation of state in thermodynamics; absorption, emission, and
scattering processes in matter; lasing; radiation transport; radiative
cooling and energy loss; diagnostic and spectroscopic methods that
employ the radiative properties of matter; astrophysics and planetary
science; the physics of radiation sources; and fusion science and
technology.1,2

In a plasma, several charge states usually exist simulta-
neously, and therefore the total radiation emission arises from
excited states of different ionic charges. This indicates that not
only are the populations of excited states and their excitation
mechanisms relevant but so too is the ionization balance. In hot
plasmas, while the excited-state populations are essentially driven
by electron collisional excitation, the ionization balance depends

strongly on ionization and recombination processes. As shown by
Burgess3 in the context of an analysis of solar emission, electron
collisional ionization and radiative recombination alone could not
account for observations, and dielectronic recombination was
proposed to explain a low level of ionization. In considering ra-
diation balance, it is therefore important to take account of die-
lectronic recombination. Similarly, the concept of local
thermodynamic equilibrium (LTE) depends not only on radiative
and collisional rates (as in the traditional description), but on
autoionization rates too.

Dielectronic recombination (DR) is the capture of an electron
with simultaneous excitation of an atomic core and subsequent
radiative stabilization of the core. Within the framework of
a simplified model, DR can be viewed as a sequence involving
dielectronic capture of a continuum electron into the state nl and
subsequent radiative stabilization. The first step is the capture of
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an electron into the state nl with simultaneous excitation of the
atomic core from state α0 to state α:

dielectronic capture : A+Z(α0) + e→A+(Z−1)**(αnl). (1.1)

After dielectronic capture, autoionization or radiative stabilization
can take place:

autoionization : A+(Z−1)**(αnl)→A+Z(α0) + eAuger. (1.2)

The radiative stabilization involves the core and the captured electron
(spectator electron):

core stabilization : A+(Z−1)**(αnl)→A+(Z−1)*(α0nl) + Zωcore,

(1.3)

spectator electron stabilization : A+(Z−1)*(α0nl)→A+(Z−1)(γ) + Zωnl.

(1.4)

Here, A+(Z−1)** denotes a doubly excited state, A+(Z−1)* a singly excited
state, and γ the ground state of the ion in charge state Z − 1, i.e.,
A+(Z−1)(γ) �A+(Z−1)(ground). The radiation emission of the core [the
relation (1.3)] is known as dielectronic satellite emission and has
properties that are of great importance for plasma temperature di-
agnostics, as revealed in the pioneering work byGabriel.4 The study of
dielectronic satellite emission has become a major aspect of the
characterization of a variety of complex phenomena in non-
equilibrium plasmas: determination of electron density by angular-
momentum-changing collisions2,5–7 and by the Stark effect;8,9

characterization and measurement of hot electrons and classification
of related instabilities;10–12 determination of Auger electron heating
phenomena in X-ray free-electron laser (XFEL) interaction with solid
matter;13 radiation field analysis via hollow ion X-ray emission;14,15

collisional phenomena induced by laser-produced plasma jets;16,17

impurity transport and charge-exchange phenomenawith the neutral
background in magnetic fusion plasmas;18,19 relaxation phenomena
in fluctuating plasmas;20 disappearance of resonance line emission
followed by accumulation of dielectronic satellite emission;21–24

ionization potential depression analysis via two-dimensional maps of
hollow-ion X-ray emission in XFEL–solid matter interaction.25 It
should be noted here that for diagnostic purposes, radiation transport
of radiative transitions originating from autoionizing states should be
avoided, because re-emission of the photons is considerably reduced
owing to the high autoionization rates.16

Comparison of the relations (1.1) and (1.4) shows that effective
recombination occurs because an ionA+Z is finally transformed into an
ionA+(Z−1). As was demonstrated in Refs. 3 and 26, DR can even be the
most important recombination process. As a rule, the DR rate is high
for ions with a complex core that exhibits transitions between levels
without any change in principal quantum number, i.e., transitions with
Δn � 0, such as 2 s→2p transitions in lithium-like and more complex
ions. It is obvious that, particularly for ions with a complex core, the
number of angular momentum coupling possibilities for the whole
series of captured electrons is enormous. Therefore, the corresponding
atomic structure calculations that combine all the single contributions
(1.1)–(1.4) to give the total DR of each ion are numerically prohibitive,
and this hasmanifested itself in a continuing controversy regarding the
calculation of the ionic fractions.27–29

Moreover, the total DR rate is not an issue of atomic structure
calculations alone, but also requires consideration of populations that

are strongly out of LTE and consideration of the plasma electric
microfield. Therefore, the theoretical determination of the total DR in
a nonequilibrium plasma cannot be done within the framework of
atomic structure calculations alone.

The present paper is therefore devoted to a critical analysis of
methods for the determination of the total DR rate and to develop
a new framework to address the challenges faced. In this respect,
a rather surprising element is discovered that can be illustrated via the
above-mentioned Δn � 0 transitions, e.g., 2s → 2p transitions in
lithium-like and more complex ions. The transition energy ΔE
� Zωcore for Δn � 0 and Z ≫ 1 is of the order of ZRy, while the
ionization energy is of the order of Z2Ry≫ΔE. The 2s→ 2p transition
is the main channel for both the autoionization and radiative decay.
Since the energy E of the incident recombining electron is in all cases
smaller than the excitation energy, this implies the following in-
equality [using Ry � 1

2me(cα)2 and E � 1
2mev2e]:

Z2Ry

E
� Z αc

ve
( )2

≡ η2 ≫ 1, (1.5)

where η is the Coulomb parameter (note that the standard Coulomb
parameter determines the possibility of a quasiclassical consider-
ation). The condition (1.5) indicates the validity of the quasiclassical
regime in which, for example, the spectrum from the quantum theory
of bremsstrahlung30 coincides with the classical spectrum.31 Thus, an
important part of the overall DR processes is described well by
a quasiclassical approach. This opens up new ways to treat important
phenomena occurring in plasmas other than purely quantum me-
chanical atomic structure calculations (e.g., the multiconfiguration
Dirac–Fock method).

On the other hand, DR related to Δn � 1 transitions may require
quantum mechanical approaches. A typical example is provided by
the core transitions 1s → 2p in H-like, He-like, etc. ions. Here, the
1s → 2p transition is the main radiation channel, while the auto-
ionization channel depends strongly on the state nl of the captured
electron: for large quantum numbers n, we encounter autoionization
according to 2pnl → 2s + e, while for small quantum numbers,
the autoionization channel 2pnl → 1s + e is dominant. For the case
1s→ 2p, the transition energy ΔE � Zωcore is of the order of Z

2Ry and
thus of the same order as the ionization energy. Therefore, the
Coulomb parameter is about η ≈ 1 and quantum mechanical cal-
culations might be required.

The paper considers the most recent developments that allow
a unique description of the relevant phenomena in DR in non-
equilibrium plasmas. For a review of standard methods in the theory
of DR, the reader is referred to Refs. 26 and 32–34. In Sec. II, general
DR formulas are derived in terms of atomic structure and collisio-
nal–radiative decay probabilities. In Sec. III, quantum mechanical
multichannel methods are developed and then in Sec. IV, excited-
state coupling driven by electron collisional excitation is considered.
In Sec. V, the impact of angular-momentum-changing collisions on
DR is considered and visualized with a simple analytical approach.
Plasma electric field effects are discussed in Sec. VI, where the impacts
of ionization potential depression and of symmetry perturbations of
autoionizingmatrix elements are described. Finally, Sec. VII develops
a local plasma frequency statistical approach to calculate DR rates for
very complex ions.
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II. AUTOIONIZATION, DIELECTRONIC CAPTURE,
AND DIELECTRONIC RECOMBINATION

Let us recall the essence of the DR process. An incident electron
with energy E excites an ion core with excitation energy ΔE � Zωcore.
In this case, if the energy E is smaller than ΔE, the electron is finally
captured by the ion into a state with energy Ef ≈ −RyZ2

eff /n
2
f (Zeff is

the effective charge of the excited ion core and nf is the principal
quantum number of the captured electron) obeying the condition

E−Ef � ΔE � Zωcore ≈ E + RyZ2
eff/n2f. (2.1)

This capture results in a doubly excited state of the ion; i.e., the ion
core electron is excited with energy ΔE, while the captured electron
occupies a highly excited level of the ion. This state of the ion can
decay in two possible ways:

(i) by relaxation of the ion core electron into the initial ground state
with simultaneous ejection of the captured electron from the ion:
this process is known as autoionization [compare with the relation
(1.2)];

(ii) by radiative decay of the ion core electron, resulting in its return to
the initial state after the emission of a photon of energy Zω ≈ Zωcore

� ΔE, whereas the captured electron remains bound to the ion
[compare with the relation (1.3)].

For illustration, Fig. 1 shows the relevant energy–level diagram
for the He-like 2l2l′ autoionizing levels from which the so-called Lyα
satellites originate. The energy of the 2l2l′ levels is given approxi-
mately by E2l2l′ ≈ 2Z2

effRy/4 � Z2
effRy/2 (in the H-like approxima-

tion), which is about half of the ionization energy of theH-like ground
state Z2

nRy (where Zn is the nuclear charge). The series limit of the
autoionizing levels 2lnl′ is the first excited state 2l. Radiative decay
(dielectronic satellite emission) from the 2l2l′ levels populates the
singly excited levels 1s2l1,3L, from which further radiative decays
proceed (e.g., the resonance line W � 1s2p 1P1 − 1s2 1S0 and the
intercombination line Y � 1s2p 3P1 − 1s2 1S0) that finally populate the
ground state 1s2 1S0.

The chain of processes of dielectronic capture (1s + e → 2l2l′),
radiative decay to singly excited levels (2l2l′− 1s2l + h]), and radiative
decay to the ground state (1s2l1,3L → 1s2 1S0 + h]′) is called die-
lectronic recombination (the DR channel) because an effective re-
combination has taken place from the H-like ground state 1s 2S1/2 to
the He-like ground state 1s2 1S0.

Thus, the DR process as well as the photorecombination (PR)
process result in the capture of an incident electron and its simul-
taneous photon emission. The difference is that the photon is emitted
by the ion core electron in the DR process rather than by the incident
electron as in the PR process. Note that the relationship between the
PR and DR processes is analogous to that between standard
bremsstrahlung and polarization bremsstrahlung.35

The DR rate can be calculated from the autoionization rate of
a given atomic state with the help of the principle of detailed balance.
The first step is the application of the principle of detailed balance to
dielectronic capture, i.e.,

nZj ΓZ,Z+1jk � nZ+1k ne〈DC〉kj, (2.2)

where nZj is the atomic population of the autoionizing state, ΓZ,Z+1jk
is the autoionization rate from state j to a state k with population

nZ+1k , and 〈DC〉kj is the dielectronic capture rate from state k to the
upper state j. To solve Eq. (2.2) for the dielectronic capture rate,
we need to specify the populations. For this purpose, we consider
a system in thermodynamic equilibrium. In this case, the pop-
ulations nZj and nZ+1k are linked via the Saha–Boltzmann equation,
because states j and k belong to different ionic states Z and Z + 1,
respectively, i.e.,

nZj
nZ+1k

� ne
gZ
j

2gZ+1
k

2πZ2

mekTe
( )3/2

exp
ΔEZ+1,Z

k,j

kTe

⎛⎝ ⎞⎠, (2.3)

where gZ
j and gZ+1

k are the statistical weights of states j and k, ne is the
electron density, me is the electron mass, and Te is the electron
temperature. The energy difference ΔEZ+1,Z

kj is related to the so-called
dielectronic capture energy EDC

kj by (see also Fig. 1)

ΔEZ+1,Z
k,j � −EDC

kj , (2.4)

whereEDC
kj is the energy of the Auger electron if the autoionizing state

j decays via autoionization to state k. Combining Eqs. (2.2)–(2.4), we
find the general expression for the dielectronic capture rate:

FIG. 1. Energy-level diagram of the He-like autoionizing levels 2l2l′ and their
associated radiative decays, so-called Lyα satellites. After radiative decay, the singly
excited states 1s2l 1,3L are formed, from which further radiative decay proceeds
(e.g., the resonance and intercombination lines W and Y, respectively). Also
indicated are the Li-like autoionizing levels 1s2l2l′.
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〈DC〉kj �
gZ
j

2gZ+1
k

2πZ2

me
( )3/2

ΓZ,Z+1jk

exp(−EDC
kj /kTe)

(kTe)3/2
, (2.5)

or, in convenient units (with ΓZ,Z+1jk in s−1, and EDC
kj and Te in eV),

〈DC〉kj � 1.6563 10−22
gZ
j

gZ+1
k

ΓZ,Z+1jk

exp(−EDC
kj /Te)

T3/2
e

(cm3/s) (2.6)

[note that Eq. (2.6) assumes aMaxwellian electron energy distribution
function with temperature Te]. If PZ

j,gr is the probability that the
autoionizing state j of charge state Z decays to the ground state of the
same charge state, then the quantity PZ

j,gr〈DC〉kj is called the die-
lectronic recombination rate coefficient (with units cm3 s−1) into state
k via the intermediate state j:

〈DR〉Z+1,Zkj � PZ
j,gr〈DC〉Z+1,Zkj . (2.7)

Note that it is important to underline that the assumption of
thermodynamic equilibrium to eliminate the populations of Eq. (2.2)
with the help of Eq. (2.3) is only a convenient method to apply the
principle of detailed balance, but does notmean that relations derived
with the help of the detailed balance relations are only valid under the
assumption of thermodynamic equilibrium. In fact, the dielectronic
capture rate [Eq. (2.6)] can also be derived from purely quantum
mechanical relations (micro-reversibility), providing a dielectronic
capture rate that is also valid for an arbitrary electron energy dis-
tribution function F(E):20

〈DC〉kj � π2Z3�
2

√
m3/2

e

gZ
j

gZ+1
k

ΓZ,Z+1jk

F(EDC
kj )����

EDC
kj

√ , (2.8)

or, in convenient units (with ΓZ,Z+1jk in s−1, and F(E), EDC
kj , and Te

in eV),

〈DC〉kj � 2.93603 10−40ΓZ,Z+1jk

gZ
j

gZ+1
k

ΓZ,Z+1jk

F(EDC
kj )����

EDC
kj

√ (cm3/s). (2.9)

III. TOTAL RATES OF DIELECTRONIC RECOMBINATION:
LOW-DENSITY APPROXIMATION

A. General considerations

In general, the probability PZ
j,gr from Eq. (2.7) is a function of

density and temperature, i.e.,

PZ
j,gr � PZ

j,gr(ne, Te). (3.1)

The probability function (3.1) has to be determined from nu-
merical calculations of a multilevel multi-charge-state atomic
population kinetics that explicitly involves all necessary auto-
ionizing states as “active levels” (“active” here means that the
populations of the autoionizing levels are calculated in a similar
way to the ground and singly excited states in the population
kinetics). If collisions are negligible compared with spontaneous
radiative decay rates as well as with autoionization rates, then the
probability PZ

j,gr can be approximated by the so-called satellite
branching factors BZ

ji:
3

PZ
j,gr →�

i
BZ
ji ��

i

AZ
ji

�
l

AZ
jl +�

k

ΓZ,Z+1jk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (3.2)

That is to say, Eq. (3.2) is the low-density approximation of the
probability PZ

j,gr. In this case, the DR rate is given by the following
approximate expression:

〈DR〉Z+1,Zkj ≈�
i
BZ
ji .〈DC〉Z+1,Zkj

��
i

AZ
ji

�
l

AZ
jl +�

k

ΓZ,Z+1jk

〈DC〉Z+1,Zkj

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (3.3)

With the help of Eq. (2.5), Eq. (3.3) can be written as follows:

〈DR〉Z+1,Zkj ≈
1

2gZ+1
k

2πZ2

me
( )3/2

3
exp(−EDC

kj /kTe)
(kTe)3/2 �

i

gZ
j ΓZ,Z+1jk AZ

ji

�
l

AZ
jl +�

k

ΓZ,Z+1jk

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (3.4)

The term in braces {· · ·} is the so-called dielectronic satellite intensity
factor

QZ+1,Z
k,ji � gZ

j ΓZ,Z+1jk AZ
ji

�
l

AZ
jl +�

k

ΓZ,Z+1jk

, (3.5)

which has been calculated by the pioneering work in Refs. 36 and
37 with unprecedented precision via the multiconfiguration
Z-expansion method. Therefore, under the assumptions made in
Eq. (3.2), the DR rate is given by the sum of the dielectronic satellite
intensity factors. One can see that the essential quantities that
appear in Eqs. (3.4) and (3.5) to calculate the DR rate in the low-
density approximation are the dielectronic capture energy, sta-
tistical weights, and radiative and autoionizing decay rates. These
quantities can nowadays routinely be generated from atomic
structure calculations.

However, as one can see, even for the simplest configura-
tions 2lnl′, the numerical calculations are rather cumbersome
because very large quantum numbers nl′ have to be involved to
achieve convergence for the DR rates. For large quantum
numbers, however, convergence is difficult to achieve in
purely quantum numerical atomic structure calculations.
Moreover, to obtain the total DR rate from H-like to He-like
ions, one needs to invoke all possible intermediate states j � 3lnl′,
4lnl′, 5lnl′, . . ..

One can easily understand that for more complex config-
urations, the number of autoionizing states that need to be
involved rapidly becomes numerically prohibitive for purely
quantum mechanical numerical calculations. For practical ap-
plications, it is therefore mandatory to invoke additional
methods, such as the Burgess approach,3,32 Vainshtein’s
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simplified quantum mechanical dielectronic recombination
model,26,38 a quasiclassical approach,31,39 or a statistical
approach.40,41

B. The Burgess approximation

To illuminate the essence of the various approximations cur-
rently employed, we consider first the most general expression for the
total dielectronic recombination rate 〈DR〉Z+1,Ztot . For the total rate, all
DR rates 〈DR〉Z+1,Zkj � PZ

j,gr〈DC〉Z+1,Zkj have to be summed with re-
spect to the initial state k and also with respect to the intermediate
states j, i.e.,

〈DR〉Z+1,Ztot ��
k
�
j
〈DR〉Z+1,Zkj ��

k
�
j
PZ
j,gr〈DC〉Z+1,Zkj . (3.6)

Because the probability PZ
j,gr is a function of density and temperature

[see Eq. (3.1)], it is very difficult to obtain general and closed formulas
for the DR rate coefficient. Only in the low-density approximation,
where Eq. (3.3) holds, can general formulas for the DR rate co-
efficients be obtained.

One of the most widely used general approximate empirical
formulas in the framework of the approximation (3.2) is the so-
called Burgess formula,3 in which it is assumed that the nl
spectator electron is not interacting with the core and can be
treated in the hydrogenic approximation and that the capture
cross section averaged over the resonances can be obtained
with the aid of the correspondence principle by extrapolating
below threshold the partial cross section for the core excitation
α0 → α:

〈DR〉Z+1,Zkj :� DZ+1,Z(α0 → α, nl). (3.7)

For the total DR rate, we have

〈DR〉Z+1,Ztot :� DZ+1,Z ��
α0
�
α
�
n
�
n−1

l�0
DZ+1,Z(α0 → α, nl). (3.8)

For the simplest example of autoionizing states 2l2l′ outlined in
Fig. 1, α0 � 1s and α1 � 2p, i.e., the transition α0→ α corresponds to
the Lyα transition in H-like ions. For these configurations, DR
into the ground state is the most important transition; i.e.,
there exists a single state k � α0 � 1s. Therefore, α0 coincides
with the atomic ground state, and the sum over α0 can be
suppressed:

DZ+1,Z ≈�
α
�
n
�
n−1

l�0
DZ+1,Z(α0 → α, nl). (3.9)

The DR rate coefficient DZ+1,Z(α0 → α, nl) can then be expressed via
the following analytical empirical expression:3

DZ+1,Z(α0 → α, nl) � 4.8310−11fα0 αBdβ
3/2e−βχd (cm3/s), (3.10)

with

β � (z + 1)2Ry
kTe

, (3.11)

χd � χ

1 + 0.015
z3

(z + 1)2
,

(3.12)

χ � ΔE(α0 → α)
(z + 1)2Ry . (3.13)

Here, z is the so-called spectroscopic symbol of the doubly excited ion
after recombination, z � Zn −Nbound + 1, whereNbound is the number
of bound electrons and Zne is the nuclear charge. If the first resonance
transition is a Δn � 0 transition, then the branching factor Bd is given
by the following fitting formula (the so-called Burgess–Mertz
formula):32

Bd � zχ

z2 + 13.4
( )1/2 1

1 + 0.105(z + 1)χ + 0.015(z + 1)2χ2 . (3.14)

For Δn ≠ 0 the fitting function for the branching factor Bd is dif-
ferent:32

Bd � zχ

z2 + 13.4
( )1/2 0.5

1 + 0.210(z + 1)χ + 0.030(z + 1)2χ2 . (3.15)

Let us recall the meaning of the branching factor Bd: after dielectronic
capture, a doubly excited state is formed that can decay via auto-
ionization or radiative decay. For DR, only the radiative decays
contribute finally to recombination, since autoionization returns the
autoionizing state to the original state.

According to Eq. (3.10), α0 is the ground state, and therefore
fα0α is the electric dipole absorption oscillator strength for the
resonance transition α0 → α with transition energy ΔE(α0 → α) in
eV. As the absorption oscillator strength decreases rapidly with
increasing principal quantum number of the upper level, it is
usually sufficient to consider only the first two α-terms in the sum in
Eq. (3.9), and we finally obtain the desired expression for the total
DR coefficient:

DZ+1,Z ≈ DZ+1,Z(α0 → α1) +DZ+1,Z(α0 → α2), (3.16)

with

DZ+1,Z(α0 → α) :��
n
�
n−1

l�0
DZ+1,Z(α0 → α, nl). (3.17)

Let us consider DR into neutral helium as an example (note that
a single * indicates a singly excited state, while ** corresponds to
a multiply excited state):

He1+(1s) + e→He0+**(nln′l′)→He0+(1s2). (3.18)

For this example, α0 � 1s, α1 � 2p, α2 � 3p, . . .. Therefore, fα0α1
corresponds to the electric dipole absorption oscillator strength of the
resonance line, namely, the H-like Lyα line of singly ionized helium,
while fα0α2 corresponds to the Lyβ line. The oscillator strengths are
f1s→2p � 0.4164 and f1s→3p � 0.079 14, and their transition energies are
ΔE(1s → 2p) � 40.81 eV and ΔE(1s → 3p) � 48.37 eV. The spec-
troscopic symbol is z � 1 andΔn ≠ 0 [therefore, Eq. (3.15) applies]. As
one can see, higher-n oscillator strengths make almost negligible
contributions to the total DR rate (note that this has to be
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distinguished from the fact that high-n spectator electrons can make
quite important contributions). From Eqs. (3.11)–(3.13), we obtain
β � 4Ry/kTe, Bd(1s→ 2p) � 0.0825, Bd(1s→ 3p) � 0.0846, χd(1s→ 2p)
� 0.747, and χd(1s→ 3p) � 0.886. For the rate coefficients at kTe � Ry
(β � 4), we obtain DHe1+ ,He0+ (1s→ 2p) � 1.653 10−12 cm3/s, and
DHe1+,He0+ (1s→ 3p) � 3.23 10−13 cm3/s. This confirms that the
leading terms for DR are indeed given by Eq. (3.16).

C. Quantum mechanical multichannel approach

Comparison of the results from Eqs. (3.10)–(3.15) with more
precise quantum mechanical calculations carried out with Vain-
shtein’s ATOM code42,43 show that the χd values are in quite good
agreement, whereas the Bd values differ strongly. For the resonance
transitions 1s → 2p and 1s → 3p, the Bd values obtained from
Vainshtein’s simplified quantum mechanical multi-channel
(QMMC) approach38,44 for the above example of helium are sig-
nificantly different, namely, Bd,ref(1s → 2p) � 0.155, Bd,ref(1s → 3p)
� 0.0144, χd,ref(1s → 2p) � 0.744, and χd,ref(1s → 3p)

� 0.888, giving DHe1+,He0+
ref (1s→ 2p) � 3.103 10−12 cm3/s and

DHe1+,He0+
ref (1s→ 3p) � 5.46310−14 cm3/s, i.e., the Burgess formula

underestimates the Bd value for α0→ α � 1s→ 2p by a factor of 2 and
overestimates the Bd value for α0→ α � 1s→ 3p by a factor of 6. These
are general observations: the precision of Eqs. (3.10)–(3.15) is very
difficult to estimate: it might be about a factor of 2 for the strongest
resonance transition, but it might also deviate by orders of
magnitude.

Understanding the large overestimate of the Bd value for the
transition 1s→ 3p is of particular importance and is related to the fact
that the Burgess formulas take into account only one autoionizing
channel. For example, the 3lnl′-configurations (which are related to
the transition α0→ α2� 1s→ 3p in the above example) autoionize not
only to the ground state but to excited states too:

3lnl′→ 1s + eAuger
2l + eAuger

{ }. (3.19)

Complex numerical multiconfiguration Hartree–Fock calcula-
tions show23,45 that the autoionization rates to the excited states
“2l” are even more important than to the ground state “1s.” This
reduces considerably the branching factor for DR [the Bd factor in
Eq. (3.10)]. In fact, as one can see from Eq. (3.15), very similar
branching factors are given for the transitions α0 → α1 � 1s → 2p
and α0 → α2 � 1s → 3p because only one autoionizing channel is
taken into consideration.

It is very important for the practical application of DR rates in
the modeling of ionization balance to explore in more detail the
influence of the various multiple channels for Auger and radiative
decay. Below, we perform QMMC calculations for DR in
the simplified Vainshtein approach,38,42–44 and we fit the nu-
merical results to an analytical expression in order to facilitate the
application and allow direct comparison with the Burgess
formulas:

DZ+1,Z(α0 → α, nl) � 10−8 3
m

2l0 + 1
Bdβ

3/2e−βχd (cm3/s), (3.20)

β � Z2 Ry

kTe
, (3.21)

where Ry � 13.6057 eV, kTe is the electron temperature in eV,m is the
number of equivalent electrons of state α0, Z is the charge of the ion
where the core transition α0 → α takes place (e.g., for the 2lnl′
autoionizing states of He-like argon, the core transition is the 1s→ 2p
transition in H-like argon, Z � 18), and l0 is the corresponding orbital
momentum of state α0. The physical meaning of the parameter χd is
related to the fact that all contributions from the configurations with
different spectator electrons nl have to be summed up to give the total
DR rate with different energies [see Eq. (2.1)]. The parameter
χd provides a fit to the numerical results to replace the sumof different
energies in the bestmanner through an average energy parameter χdβ.
Finally, the total sum is replaced by an average amplitude Bd to
provide a simple analytical expression without the need for
summation.

As a demonstration, let us consider the variousmechanisms via a
study of the DR related to the core transition 2s–4p. For example,
the numerical calculations in the single-channel approximation
for Be atoms give B(1 − channel)

d (2s− 3p) � 3.43 10−5, whereas
B(1− channel)
d (2s− 4p) � 1.63 10−5; i.e., 2s–4p transitions are only

reduced by a factor of about two compared with 2s–3p transitions.
Numerical calculations including multichannel decay provide an
entirely different picture, withB(6 − channel)

d (2s− 3p) � 2.03 10−6, but
B(6−channel)
d (2s− 4p) � 3.5310−7; i.e., the QMMC numerical calcu-

lations indicate that higher-order DR rates are strongly suppressed.
This is a general observation that multichannel decay can reduce DR
considerably and can even lead to a quite different interpretation of its
importance.

Table I shows the numerical calculation for the DR Bd factors for
single- and multichannel decay into Li-like ions for different orders
and elements in comparison with the standard Burgess formula. One
observes that the Burgess formula is in reasonable agreement with the
numerical results for single-channel decay, although it differs by up to
a factor of 3 in some cases. However, comparison with the numerical
calculations using the QMMC approach reveals extremely large
overestimates ofDRobtained by theBurgess formula. In particular for
light elements, the overestimation can be by as much as one or two
orders of magnitude: for example, for theDR related to the autoionizing
states 1s24lnl′ of Be, we have B(multichannel)

d (2s− 4p) � 3.473 10−7 and

B(Burgess)
d (2s− 4p) � 1.103 10−5; i.e., the Burgess formula over-

estimatesBdbymore thana factor of 30. It is thereforenot recommended
to calculate higher-order contributions to DR via the Burgess approach.

In Tables II–IV, we present the numerical results of the QMMC
approach for H-, He-, and Li-like ions, which are the most important
for K-shell spectroscopy. For ease of application, we have fitted all
results to the simple analytical formula (3.20).

Table II presents the results of a numerical calculation of the total
DR rate into H-like ions for the core transitions 1s–2p and 1s–3p for
all elements fromHe (Z � 2) up toMo (Z � 42) and the corresponding
fitting parameters according to Eq. (3.20). It can be seen that for low-Z
elements, the DR related to the core transition 1s–2p is dominant,
whereas for large Z, the relative contribution of the DR with the core
transition 1s–3p increases. The Burgess formula provides amplitudes
Bd that are about a factor of 3 smaller than the present numerical
calculations.
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For the 3lnl′ states, the Burgess formula considerably over-
estimates the DR rate because it does not take into account multi-
channel radiative and Auger decays. This is of particular importance
for low-Z elements. For example, for C, the single-channel ap-
proximation gives Bd � 6.75 3 10−5, whereas the four-channel ap-
proximation gives Bd � 6.323 10−6, i.e., a reduction by a factor of 10.
Multichannel decay is much less important for higher Z: for example,
for Fe, Bd � 5.13 3 10−6, whereas the four-channel approximation
gives Bd � 2.60 3 10−6.

Table III presents numerical results for the total DR rate intoHe-
like ions for the core transitions 1s–2p and 1s–3p for all elements from
He (Z� 2) up toMo (Z� 42) and the corresponding fitting parameters
according to Eq. (3.20). It can be seen that for low-Z elements, the DR
related to the core transition 1s–2p is dominant, whereas for large Z,
the relative contribution of the DR with the core transition 1s–3p
increases. The Burgess formula gives amplitudes Bd that are about
a factor of 3 smaller than the present numerical calculations. For the
1s3lnl′ states, the Burgess formula considerably overestimates the DR
rate because it does not take into account multichannel radiative and
Auger decays. This is of particular importance for low-Z elements. For
example, for C, the single-channel approximation gives Bd � 6.76
3 10−5, whereas the four-channel approximation gives Bd � 2.98
3 10−6, i.e., a reduction by a factor of 20. Multichannel decay is much

less important for higher Z: for example, for Fe, Bd � 5.34 3 10−6,
whereas the four-channel approximation gives Bd � 2.60 3 10−6.

Table IV presents numerical results for DR into Li-like ions
related to the core transition 2s–2p, i.e., aΔn� 0 transition. Therefore,
the fitting parameter χd is rather small and the associated exponential
factor for DR does not vary much. In addition, the configurations
1s22lnl′ are only autoionizing for rather high principal quantum

TABLE II. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into H-like ions
originating from the 2lnl′ and 3lnl′ autoionizing levels, with Z� Zn,m� 1, and l0� 0. The
numerical data include corrections for multiple decay channels (two channels for 2lnl′
and four channels for 3lnl′).

2lnl′: α0 � 1s → α � 2p 3lnl′: α0 � 1s→α � 3p

Element Bd χd Bd χd

He 3.12 3 10−4 0.744 5.48 3 10−6 0.888
Li 3.72 3 10−4 0.736 6.41 3 10−6 0.887
Be 3.67 3 10−4 0.727 6.53 3 10−6 0.885
B 3.42 3 10−4 0.718 6.47 3 10−6 0.883
C 3.13 3 10−4 0.709 6.32 3 10−6 0.881
N 2.85 3 10−4 0.700 6.31 3 10−6 0.879
O 2.58 3 10−4 0.691 5.92 3 10−6 0.877
F 2.33 3 10−4 0.682 5.70 3 10−6 0.874
Ne 2.11 3 10−4 0.673 5.48 3 10−6 0.872
Na 1.90 3 10−4 0.665 5.26 3 10−6 0.870
Mg 1.72 3 10−4 0.657 5.04 3 10−6 0.868
Al 1.56 3 10−4 0.649 4.84 3 10−6 0.866
Si 1.41 3 10−4 0.642 4.63 3 10−6 0.863
P 1.27 3 10−4 0.636 4.43 3 10−6 0.861
S 1.15 3 10−4 0.630 4.24 3 10−6 0.859
Cl 1.05 3 10−4 0.624 4.05 3 10−6 0.857
Ar 9.50 3 10−5 0.620 3.87 3 10−6 0.856
K 8.61 3 10−5 0.616 3.69 3 10−6 0.854
C 7.82 3 10−5 0.612 3.52 3 10−6 0.852
Sc 7.09 3 10−5 0.609 3.35 3 10−6 0.851
Ti 6.45 3 10−5 0.606 3.19 3 10−6 0.849
V 5.85 3 10−5 0.604 3.04 3 10−6 0.848
Cr 5.33 3 10−5 0.602 2.89 3 10−6 0.847
Mn 4.85 3 10−5 0.601 2.74 3 10−6 0.846
Fe 4.42 3 10−5 0.599 2.60 3 10−6 0.845
Co 4.03 3 10−5 0.598 2.47 3 10−6 0.844
Ni 3.68 3 10−5 0.598 2.34 3 10−6 0.843
Cu 3.37 3 10−5 0.597 2.22 3 10−6 0.842
Zn 3.08 3 10−5 0.597 2.10 3 10−6 0.842
Ga 2.83 3 10−5 0.596 1.99 3 10−6 0.842
Ge 2.60 3 10−5 0.596 1.88 3 10−6 0.841
As 2.39 3 10−5 0.596 1.78 3 10−6 0.841
Se 2.20 3 10−5 0.596 1.68 3 10−6 0.841
Br 2.03 3 10−5 0.596 1.59 3 10−6 0.841
Kr 1.88 3 10−5 0.596 1.50 3 10−6 0.841
Rb 1.74 3 10−5 0.597 1.42 3 10−6 0.841
Sr 1.61 3 10−5 0.597 1.34 3 10−6 0.842
Y 1.50 3 10−5 0.597 1.27 3 10−6 0.842
Zr 1.39 3 10−5 0.598 1.20 3 10−6 0.842
Nb 1.30 3 10−5 0.599 1.13 3 10−6 0.843
Mo 1.21 3 10−5 0.599 1.07 3 10−6 0.843

TABLE I. Bd factors according to Eqs. (3.20) and (3.21) for DR into Li-like ions
originating from the 1s2nln′l′ autoionizing levels, with Z � Zn − 2,m � 1, and l0 � 0. The
numerical data show single- and multichannel approximations as well as the
corresponding factors according to the Burgess approach (note that the different
numerical coefficients and the oscillator strength in the original Burgess formula
[Eq. (3.10)] compared with Eq. (3.20) have been included in the value for B(Burgess)

d to
facilitate comparison of the different methods).

Element

1s22lnl′: α0 � 1s22s → α � 1s22p

B(1− channel)
d B(multichannel)

d B(Burgess)
d

Be 8.09 3 10−5 . . . 1.34 3 10−4

C 5.18 3 10−5 . . . 7.99 3 10−5

Mg 1.34 3 10−5 . . . 1.94 3 10−5

Ar 6.87 3 10−6 . . . 8.65 3 10−6

Fe 4.02 3 10−6 . . . 4.88 3 10−6

Mo 3.11 3 10−6 . . . 3.87 3 10−6

1s23lnl′: α0 � 1s22s → α � 1s23p

Be 3.44 3 10−5 1.97 3 10−6 2.88 3 10−5

C 6.45 3 10−5 6.61 3 10−6 6.98 3 10−5

Mg 6.43 3 10−5 2.57 3 10−5 6.96 3 10−5

Ar 4.55 3 10−5 2.42 3 10−5 5.15 3 10−5

Fe 2.61 3 10−5 1.57 3 10−5 3.54 3 10−5

Mo 8.61 3 10−6 6.48 3 10−6 1.89 3 10−5

1s24lnl′: α0 � 1s22s → α � 1s24p

Be 1.60 3 10−5 3.47 3 10−7 1.10 3 10−5

C 2.52 3 10−5 3.39 3 10−7 2.23 3 10−5

Mg 2.06 3 10−5 1.30 3 10−6 1.87 3 10−5

Ar 1.29 3 10−5 2.05 3 10−6 1.27 3 10−5

Fe 6.54 3 10−6 2.00 3 10−6 8.01 3 10−6

Mo 1.87 3 10−6 1.17 3 10−6 3.82 3 10−6
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numbers. This is quite different to theDR related to the core transition
2s–3p, where the states are autoionizing for rather low quantum
numbersnl and the temperature dependence is very different owing to
an order-of-magnitude difference in the χd factor.

Unlike DR into H- and He-like ions (Tables II and III), the DR
related to the n � 3 core transition is very important compared with
the 2s–2p related recombination. For this reason, the temperature
dependence of the total recombination rate (which is the sum of the

DR rates related to the 2s–2p, 2s–3p, . . ., core transitions) is complex
and differs qualitatively from the rates ofDR intoH- andHe-like ions,
which are dominated by a single exponential factor.

IV. EXCITED-STATE COUPLING OF DIELECTRONIC
RECOMBINATION IN DENSE PLASMAS

Table V shows the DR rates related to the excited states 1s22p of
Li-like ions. It can be seen from a comparison of the numerical data in

TABLE III. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into He-like
ions originating from the 1s2lnl′ and 1s3lnl′ autoionizing levels, with Z � Zn − 1,m � 2,
and l0 � 0. The numerical data include corrections for multiple decay channels (two
channels for 1s2lnl′ and four channels for 1s3lnl′).

1s2lnl′:
α0 � 1s2 → α � 1s2p

1s3lnl′:
α0 � 1s2 → α � 1s3p

Element Bd χd Bd χd

Li 3.39 3 10−5 1.11 1.57 3 10−6 1.27
Be 9.94 3 10−5 0.961 2.12 3 10−6 1.14
B 1.53 3 10−4 0.891 2.51 3 10−6 1.07
C 1.93 3 10−4 0.848 2.98 3 10−6 1.03
N 2.17 3 10−4 0.818 3.40 3 10−6 1.00
O 2.34 3 10−4 0.795 3.92 3 10−6 0.983
F 2.17 3 10−4 0.775 4.23 3 10−6 0.967
Ne 2.05 3 10−4 0.757 4.50 3 10−6 0.956
Na 1.88 3 10−4 0.740 4.56 3 10−6 0.945
Mg 1.72 3 10−4 0.726 4.54 3 10−6 0.937
Al 1.57 3 10−4 0.713 4.47 3 10−6 0.929
Si 1.43 3 10−4 0.701 4.36 3 10−6 0.922
P 1.30 3 10−4 0.690 4.22 3 10−6 0.916
S 1.18 3 10−4 0.681 4.07 3 10−6 0.910
Cl 1.07 3 10−4 0.672 3.92 3 10−6 0.905
Ar 9.72 3 10−5 0.664 3.76 3 10−6 0.901
K 8.83 3 10−5 0.658 3.61 3 10−6 0.897
C 8.02 3 10−5 0.652 3.45 3 10−6 0.893
Sc 7.28 3 10−5 0.647 3.30 3 10−6 0.889
Ti 6.62 3 10−5 0.642 3.15 3 10−6 0.886
V 6.02 3 10−5 0.638 3.01 3 10−6 0.883
Cr 5.47 3 10−5 0.635 2.87 3 10−6 0.880
Mn 4.98 3 10−5 0.632 2.73 3 10−6 0.877
Fe 4.54 3 10−5 0.629 2.60 3 10−6 0.875
Co 4.14 3 10−5 0.627 2.47 3 10−6 0.873
Ni 3.78 3 10−5 0.625 2.35 3 10−6 0.871
Cu 3.46 3 10−5 0.623 2.23 3 10−6 0.869
Zn 3.16 3 10−5 0.622 2.11 3 10−6 0.868
Ga 2.90 3 10−5 0.620 2.00 3 10−6 0.867
Ge 2.67 3 10−5 0.619 1.90 3 10−6 0.865
As 2.45 3 10−5 0.619 1.80 3 10−6 0.864
Se 2.26 3 10−5 0.618 1.70 3 10−6 0.864
Br 2.08 3 10−5 0.617 1.61 3 10−6 0.863
Kr 1.93 3 10−5 0.617 1.52 3 10−6 0.862
Rb 1.78 3 10−5 0.616 1.44 3 10−6 0.862
Sr 1.65 3 10−5 0.616 1.36 3 10−6 0.861
Y 1.53 3 10−5 0.616 1.29 3 10−6 0.861
Zr 1.43 3 10−5 0.616 1.22 3 10−6 0.861
Nb 1.33 3 10−5 0.616 1.15 3 10−6 0.861
Mo 1.24 3 10−5 0.616 1.09 3 10−6 0.861

TABLE IV. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into Li-like ions
originating from the 1s22lnl′ and 1s23lnl′ autoionizing levels, with Z � Zn− 2,m� 1, and
l0 � 0. The numerical data include corrections for multiple decay channels (one channel
for 1s22lnl′ and four channels for 1s23lnl′).

1s22lnl′:
α0 � 1s22s → α � 1s22p

1s23lnl′:
α0 � 1s22s→ α � 1s23p

Element Bd χd Bd χd

Be 8.09 3 10−5 0.057 1 1.97 3 10−6 0.197
B 6.86 3 10−5 0.040 0 2.85 3 10−6 0.173
C 5.18 3 10−5 0.030 6 6.61 3 10−6 0.161
N 3.95 3 10−5 0.024 8 1.06 3 10−5 0.153
O 3.09 3 10−5 0.020 7 1.47 3 10−5 0.149
F 2.47 3 10−5 0.017 9 1.85 3 10−5 0.145
Ne 2.02 3 10−5 0.015 6 2.17 3 10−5 0.142
Na 1.69 3 10−5 0.013 9 2.41 3 10−5 0.140
Mg 1.43 3 10−5 0.012 6 2.57 3 10−5 0.138
Al 1.23 3 10−5 0.011 5 2.67 3 10−5 0.136
Si 1.07 3 10−5 0.010 5 2.71 3 10−5 0.135
P 9.43 3 10−6 0.009 81 2.69 3 10−5 0.133
S 8.41 3 10−6 0.009 14 2.60 3 10−5 0.131
Cl 7.57 3 10−6 0.008 58 2.53 3 10−5 0.130
Ar 6.87 3 10−6 0.008 09 2.42 3 10−5 0.128
K 6.25 3 10−6 0.007 72 2.31 3 10−5 0.127
C 5.76 3 10−6 0.007 36 2.19 3 10−5 0.126
Sc 5.35 3 10−6 0.007 04 2.09 3 10−5 0.124
Ti 5.00 3 10−6 0.006 77 1.97 3 10−5 0.123
V 4.67 3 10−6 0.006 58 1.86 3 10−5 0.122
Cr 4.42 3 10−6 0.006 37 1.76 3 10−5 0.120
Mn 4.20 3 10−6 0.006 20 1.66 3 10−5 0.119
Fe 4.02 3 10−6 0.006 05 1.57 3 10−5 0.118
Co 3.86 3 10−6 0.005 92 1.48 3 10−5 0.117
Ni 3.72 3 10−6 0.005 81 1.40 3 10−5 0.116
Cu 3.61 3 10−6 0.005 71 1.32 3 10−5 0.115
Zn 3.51 3 10−6 0.005 64 1.25 3 10−5 0.114
Ga 3.42 3 10−6 0.005 58 1.18 3 10−5 0.113
Ge 3.35 3 10−6 0.005 53 1.11 3 10−5 0.112
As 3.25 3 10−6 0.005 56 1.05 3 10−5 0.111
Se 3.20 3 10−6 0.005 54 9.96 3 10−6 0.110
Br 3.20 3 10−6 0.005 46 9.43 3 10−6 0.109
Kr 3.17 3 10−6 0.005 46 8.92 3 10−6 0.108
Rb 3.15 3 10−6 0.005 47 8.45 3 10−6 0.107
Sr 3.13 3 10−6 0.005 48 8.01 3 10−6 0.106
Y 3.12 3 10−6 0.005 51 7.59 3 10−6 0.105
Zr 3.11 3 10−6 0.005 54 7.20 3 10−6 0.105
Nb 3.11 3 10−6 0.005 58 6.83 3 10−6 0.104
Mo 3.11 3 10−6 0.005 63 6.48 3 10−6 0.103
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Tables IV and V that the contribution from the excited states is even
more important than that from the ground state. For example, for Be,
Bd(2s − 3p) � 1.97 3 10−6, whereas Bd(2p − 3d) � 1.78 3 10−4 and
Bd(2p − 4d) � 1.88 3 10−5. This means that the excited-state con-
tribution is up to two orders of magnitude larger than the ground-
state contribution. Therefore, even for rather moderate densities with
small populations of the excited states, their contribution toDR can be
important.

Particular important cases are encountered if the first excited
states are related to Δn � 0 radiative transitions. Because these
transition probabilities are orders of magnitude lower than those for
Δn > 0 transitions, Boltzmann populations with respect to the ground
state are already achieved for rather low electron densities. For ex-
ample, for Be, at densities of about 1015 cm−3, the population of the
excited state 1s22p is more important than that of the ground state
1s22s.46 Therefore, all excited states of beryllium (e.g., for tokamaks at
typical divertor densities) make larger contributions than the ground
state.

The excited-state contribution could even be important at very
low densities if the excited states are metastable states. Therefore, for
heavy ions, where we encounter excited states that are close to ground
states, related either by a dipole-allowed radiative transition or by
multipole transitions, DR is extremely complex even at rather low
densities. This is the main reason why, to date, ionic balance cal-
culations of heavy elements differ strongly from one method to
another and why DR remains an active field of research and of
considerable interest for a number of applications (nuclear fusion,
astrophysics, radiation sources, spectroscopic diagnostics, etc.).

In conclusion, the excited-state contribution is driven by atomic
kinetics that can have a much greater impact than any other com-
plicated effects related to ground-state contributions. This points
again to the great practical importance of approximate methods,
including the quasiclassical approach, that provide the possibility of
obtaining numerical data even for large quantumnumbers (which can
be quite important for DR).

We underline that the excited-state contributions to DR up to
high quantum numbers for the corresponding core transitions may
exceed the ground-state contribution bymany orders ofmagnitude. It
is for this reason that it is essential to include excited-state contri-
butions as much as possible, even if these are based on atomic
structure calculations of limited precision, rather than attempting to
improve via sophisticated atomic structure calculations the simplest
core-transition-related DR rates while ignoring higher-order and
excited-state contributions.

V. ANGULAR-MOMENTUM-CHANGING COLLISIONS

A strict consideration of angular-momentum-changing colli-
sions requires a very extended atomic-level system that includes all
details of the autoionizing states in order to treat properly the col-
lisional redistribution of populations. We restrict ourselves here to
a discussion of principles with the help of the most frequently
employed formula for DR and proceed from dielectronic capture
from channel k and with radiative transition j → i [see also Eqs.
(3.3)–(3.5)]:

〈DR〉Z+1,Zk,ji ≈
1

2gZ+1
k

2πZ2

me
( )3/2 gZ

j ΓZ,Z+1jk AZ
ji

�
l

AZ
jl +�

k

ΓZ,Z+1jk

exp(−EDC
kj /kTe)

(kTe)3/2
.

(5.1)

Let us now consider a simple illustrative example, namely the Lyα
dielectronic 2l2l′ satellites of He-like ions and depict two levels, one
that has very large autoionization rate and one that has a negligible
one. For the first case, we consider the level j′ � 2p2 1D2, k � 1s 2S1/2
and the radiative transition j′ � 2p2 1D2 → i′ � 1s2p 1P1. Atomic
structure calculations for carbon (Zn � 6) deliver37

TABLE V. Fitting coefficients according to Eqs. (3.20) and (3.21) for DR into excited
states of Li-like ions originating from the 1s23lnl′ and 1s24lnl′ autoionizing levels, with
Z � Zn − 2,m � 1, and l0 � 1. The numerical data include corrections for multiple decay
channels (three channels for 1s23lnl′ and six channels for 1s24lnl′).

1s23lnl′:
α0 � 1s22p → α � 1s23d

1s24lnl′:
α0 � 1s22p→ α � 1s24d

Element Bd χd Bd χd

Be 1.78 3 10−4 0.140 1.88 3 10−5 0.190
B 2.99 3 10−4 0.137 2.01 3 10−5 0.189
C 3.74 3 10−4 0.135 2.04 3 10−5 0.188
N 4.44 3 10−4 0.133 2.18 3 10−5 0.187
O 5.15 3 10−4 0.131 2.35 3 10−5 0.187
F 5.52 3 10−4 0.130 2.53 3 10−5 0.186
Ne 5.65 3 10−4 0.128 2.67 3 10−5 0.185
Na 5.76 3 10−4 0.127 2.88 3 10−5 0.181
Mg 5.73 3 10−4 0.125 3.28 3 10−5 0.174
Al 5.61 3 10−4 0.124 3.32 3 10−5 0.172
Si 5.39 3 10−4 0.122 3.33 3 10−5 0.171
P 5.19 3 10−4 0.120 3.48 3 10−5 0.167
S 4.96 3 10−4 0.119 3.46 3 10−5 0.165
Cl 4.71 3 10−4 0.117 3.44 3 10−5 0.164
Ar 4.48 3 10−4 0.115 3.41 3 10−5 0.163
K 4.25 3 10−4 0.114 3.38 3 10−5 0.161
C 4.04 3 10−4 0.112 3.34 3 10−5 0.160
Sc 3.83 3 10−4 0.110 3.30 3 10−5 0.159
Ti 3.64 3 10−4 0.109 3.25 3 10−5 0.158
V 3.45 3 10−4 0.107 3.20 3 10−5 0.157
Cr 3.27 3 10−4 0.105 3.14 3 10−5 0.156
Mn 3.11 3 10−4 0.104 3.08 3 10−5 0.156
Fe 2.95 3 10−4 0.102 3.02 3 10−5 0.155
Co 2.80 3 10−4 0.101 2.95 3 10−5 0.154
Ni 2.66 3 10−4 0.0992 2.88 3 10−5 0.154
Cu 2.53 3 10−4 0.0978 2.80 3 10−5 0.153
Zn 2.40 3 10−4 0.0964 2.72 3 10−5 0.153
Ga 2.28 3 10−4 0.0951 2.64 3 10−5 0.153
Ge 2.17 3 10−4 0.0939 2.56 3 10−5 0.152
As 2.06 3 10−4 0.0927 2.47 3 10−5 0.152
Se 1.96 3 10−4 0.0916 2.39 3 10−5 0.152
Br 1.86 3 10−4 0.0905 2.30 3 10−5 0.152
Kr 1.77 3 10−4 0.0895 2.22 3 10−5 0.152
Rb 1.68 3 10−4 0.0885 2.14 3 10−5 0.152
Sr 1.60 3 10−4 0.0876 2.05 3 10−5 0.152
Y 1.52 3 10−4 0.0867 1.97 3 10−5 0.152
Zr 1.45 3 10−4 0.0859 1.89 3 10−5 0.152
Nb 1.38 3 10−4 0.0851 1.82 3 10−5 0.152
Mo 1.31 3 10−4 0.0844 1.74 3 10−5 0.152
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ΓZ,Z+1
j′k � 2.531014 s−1, AZ

j′ i′ � 1.431012 s−1,

�
l

AZ
j′ l � 1.431013 s−1,�

k

ΓZ,Z+1
j′k � 2.531014 s−1.

For the second case, we consider the autoionizing configura-
tion j � 2p2 3P1, k � 1s 2S1/2 and the radiative transition
j � 2p2 3P1 → i � 1s2p 3P2. Atomic structure calculations (again for
Zn � 6) deliver

ΓZ,Z+1jk � 0, AZ
ji � 6.03 1011 s−1,

�
l

AZ
jl � 1.43 1012 s−1,�

k

ΓZ,Z+1jk � 0,

from which it follows that QZ+1,Z
k,ji � 0.

Assuming a two-level system where only dielectronic capture
and angular momentum changing collisions (characterized by the
rate coefficient Cj′j) contribute, the atomic populations nZj and nZ

j′ are
given by

nZj′ �
l

AZ
j′ l +�

k

ΓZ,Z+1
j′k + neCj′j( ) � nZ+1k ne〈DC〉Z+1,Z

k,j′ + nen
Z
j Cjj′ ,

(5.2)

nZj �
l

AZ
jl +�

k

ΓZ,Z+1jk + neCjj′( ) � nZ+1k ne〈DC〉Z+1,Zk,j + nen
Z
j′Cj′j,

(5.3)

where

〈DC〉Z+1,Zk,q � 1

2gZ+1
k

2πZ2

me
( )3/2

gZ
q ΓZ,Z+1qk

exp(−EDC
kq /kTe)

(kTe)3/2
, (5.4)

with q � j, j′. In the absence of collisions, Eqs. (5.1)–(5.4) become

n(0), Zq � nZ+1k ne
1

2gZ+1
k

2πZ2

me
( )3/2 gZ

q ΓZ,Z+1qk

�
l

AZ
ql +�

k

ΓZ,Z+1qk

exp(−EDC
kq /kTe)

(kTe)3/2
,

(5.5)

where the superscript “(0)” indicates the low-density case. As can
be seen from Eq. (5.5), the low-density dielectronic intensity
satellite factor [Eq. (3.5)] is reproduced from Eq. (5.2) if the
angular-momentum-changing collisions are negligible, i.e., if

�
l

AZ
j′ l +�

k

ΓZ,Z+1
j′k ≫ neCj′j.

Note that for very closely spaced levels, ion–ion collisions might
also be of importance.

To understand the effect of angular-momentum-changing
collisions on the total DR rate, we need to consider the sum for the two
levels, i.e.,

〈DRcoll〉Z+1,Ztot � 〈DRcoll〉Z+1,Zk,ji + 〈DRcoll〉Z+1,Zk,j′ i′ , (5.6)

where the subscript “coll” for the single DR rates 〈DRcoll〉Z+1,Zk,ji and
〈DRcoll〉Z+1,Zk,j′ i′ indicates that these rates include collisional processes.
This has to be distinguished from Eq. (5.1), which is a low-density
approximation. It is of principal interest to understand the change in
DR due to collisions with reference to the low-density case, i.e., we
consider the ratio

〈DRcoll〉Z+1,Ztot

〈DR〉Z+1,Ztot

�
〈DRcoll〉Z+1,Zk,ji + 〈DRcoll〉Z+1,Zk,j′ i′

〈DR〉Z+1,Zk,ji + 〈DR〉Z+1,Z
k,j′i′

. (5.7)

The collisional DR rates cannot be determined from relations like Eq.
(5.5) but need to be determined directly from the populations, i.e.,

〈DRcoll〉Z+1,Zk,ji }nZj A
Z
ji, (5.8)

because the product of the level population with the radiative decay is
the rate at which the excited state decays to the ground state, which is
equivalent to DR [note that the usual branching ratios that appear in
formulas like Eq. (5.1) are already included via the equilibrium
population] if the right-hand sides of Eqs. (5.2) and (5.3) are driven by
dielectronic capture and angular-momentum-changing collisions
between the autoionizing levels under consideration. Combining Eqs.
(5.7) and (5.8), we obtain

〈DRcoll〉Z+1,Ztot

〈DR〉Z+1,Ztot

�
nZj A

Z
ji + nZ

j′A
Z
j′ i′

n(0), Zj AZ
ji + n(0), Z

j′ AZ
j′i′

, (5.9)

i.e.,

〈DRcoll〉Z+1,Ztot

〈DR〉Z+1,Ztot

�

nZ
j′

n(0), Z
j′

+ nZj A
Z
ji

n(0), Z
j′ AZ

j′ i′

n(0), Zj AZ
ji

n(0), Z
j′ AZ

j′ i′
+ 1

. (5.10)

Because EDC
kj ≈ EDC

kj′ , we have for the population ratio in the low-
density case (for the example given above)

n(0), Zj

n(0), Z
j′

≈
gZ
j ΓZ,Z+1jk

gZ
j′Γ

Z,Z+1
j′k

�
l

AZ
j′ l +�

k

ΓZ,Z+1
j′k

�
l

AZ
jl +�

k

ΓZ,Z+1jk

≈ 0, (5.11)

since ΓZ,Z+1jk ≪ ΓZ,Z+1
j′k and ΓZ,Z+1jk ≪�lA

Z
jl (see the above example).

Therefore, population is essentially transferred by angular-mo-
mentum-changing collisions from level j′ to level j, but not vice versa.
Let us now consider the above example with the populations given by
Eqs. (5.2) and (5.3):

nZj �
l

AZ
jl + neCjj′( ) ≈ nen

Z
j′Cj′j (5.12)

and

nZj′ �
l

AZ
j′ l +�

k

ΓZ,Z+1
j′k( ) ≈ nZ+1k ne〈DC〉Z+1,Z

k,j′ . (5.13)

Equations (5.2), (5.3), and (5.8) indicate that for autoionizing levels
with very large autoionization rates, the populations are close to the
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low-density case. Equation (5.4) therefore corresponds to the low-
density case [Eq. (5.5)], i.e.,

nZj′ ≈ n(0), Z
j′ . (5.14)

Substituting Eqs. (5.11), (5.12), and .(5.14) into Eq. (5.9), we obtain

〈DRcoll〉Z+1,Ztot

〈DR〉Z+1,Ztot

≈ 1 + neCj′j

�
l

AZ
jl + neCjj′

AZ
ji

AZ
j′ i′

. (5.15)

Because gj′Cj′j ≈ gjCjj′ for closely spaced levels, Eq. (5.15) takes the
form

〈DRcoll〉Z+1,Ztot

〈DR〉Z+1,Ztot

≈ 1 + gZ
j

gZ
j′

AZ
ji

AZ
j′ i′

1

1 +�
l

AZ
jl/neCjj′

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (5.16)

If�lA
Z
jl ≈ neCjj′ , then the term in parentheses in Eq. (5.16) is about

one-half, and the relation indicates that the total DR rate is enhanced
(i.e., 〈DRcoll〉Z+1,Ztot /〈DR〉Z+1,Ztot > 1) owing to angular-momentum-
changing collisions. This can be understood in a transparent quali-
tative picture: for the level j′ with high autoionization rate, the
dielectronic capture is high and, owing to the large autoionization
rate, the branching factor for radiative deexcitation is small. If,
however, a certain fraction of population is collisionally transferred to
another level before autoionization and radiative decay disintegrate
the upper level j′, then level j is effectively populated by collisions from
j′ → j (because the population of level j is small since dielectronic
capture is insignificant owing to a small autoionization rate). The
transferred population, however, has a very favorable branching
factor for level j compared with level j′. In the above example,

AZ
ji/ �

l

AZ
jl +�

k

ΓZ,Z+1jk( ) � 6.031011/1.431012 � 0.43

for level j, whereas

AZ
j′ i′/ �

l

AZ
j′l +�

k

ΓZ,Z+1
j′k( ) � 1.431012/2.631014 � 0.0088

for level j′. Therefore, the transferred population is more effectively
transferred to the ground state to finally contribute to DR.

The impact of angular-momentum-changing collisions on the
total DR rate is difficult to observe in dense plasmas, because the
impact of such collisions is only indirect, namely, via the change in
ionization balance, where other recombination processes (e.g., three-
body recombination and radiative recombination) also come into
play. However, angular-momentum-changing collisions can be di-
rectly observed via the collisional induced change in the spectral
distribution of the corresponding dielectronic satellite transitions.

Figure 2 demonstrates this effect via He-like Lyα transitions and
their associated satellite transitions 2lnl′ → 1s2l + h]. Numerical
calculations of the spectral distribution have been carried out using
the MARIA suite of codes,10,47–49 taking into account an extended
level structure, with LSJ-split levels of different ionization stages for
ground, single, and multiple excited states being simultaneously
included. Strong density effects are indicated by red arrows in Fig. 2.

Not only do the 2l2l′ satellites show strong density effects near
λ ≈ 0.853 nm, but so do the 2l3l′ satellites near λ ≈ 0.847 nm. The
density sensitivity of the 2l3l′ satellites starts at lower densities, be-
cause the collisional rates between the 2l3l′ configurations are in
general larger than those for the 2l2l′ configurations [the collisional
rates C(2lnl′–2lnl″) increase with principal quantum number n, the
corresponding radiative rates A(2lnl″–1snl″) are almost independent
of n, and the autoionization rates Γ(2lnl″–1s) decrease with n]. Also
indicated in Fig. 2 is the so-called “blue satellite” emission located on
the blue wing of the Lyα resonance line. These satellite transitions
exhibit negative screening7 that is due to the strong effect of angular-
momentum coupling (F states). [Note that the term “negative
screening” arises from use of the Bohr formula

E � Z2
effRy

n2
� (Zn − σ)2Ry

n2

tomatch the actual energy E via a screening constant σ: in cases where
the match can only be obtained for effective charges Zeff � Zn − σ, the

FIG. 2. MARIA simulations of dielectronic satellite emission near Lyα of H-like Mg
ions for different values of the electron density at kTe � 100 eV. The red arrows
indicate the rises in intensity of particular satellite transitions with increasing density.
Satellites indicated in blue have effective negative screening due to strong angular-
momentum coupling effects.

Matter Radiat. Extremes 5, 064201 (2020); doi: 10.1063/5.0014158 5, 064201-11

©Author(s) 2020

Matter and
Radiation at Extremes REVIEW scitation.org/journal/mre

https://doi.org/10.1063/5.0014158
https://scitation.org/journal/


screening constant is negative; see also Ref. 12.] As can be seen from
Fig. 2, angular-momentum-changing collisions have little effect on
blue satellites (because their autoionization rates are quite large).

In dense-plasma spectroscopy, the perturbation of the spectral
dielectronic satellite distribution due to angular-momentum-
changing collisions is employed for density diagnostics.5–7 Note that
although the satellite intensity shows variations with temperature too,
density determination via dielectronic satellite transitions is essen-
tially not a two-parameter problem: the temperature determination
relies on the intensities of satellite transitions (with high auto-
ionization rates) relative to the resonance line, while the density
determination is based on the relative intensities of dielectronic
satellites among the transitions themselves (with low and high
autoionization rates). The density diagnostic is usually rather in-
dependent of the electron temperature, because all cross sections of
angular-momentum-changing collisions are typically in the Born
limit (the energy differences are typically much smaller than the
electron temperature).

VI. ELECTRIC FIELD EFFECTS

A. Ionization potential depression of spectator
electron orbitals

Atomic population kinetics of gases and plasmas has been applied
very successfully to the study of low-density environments, where atoms
and ions are essentially field-free. As the density increases, however, the
free-atommodel breaks down, resulting in a perturbation of the atomic
energy levels. This perturbation manifests itself essentially in a broad-
ening and a shift. Such perturbations can be observed in high-resolution
spectroscopic experiments via analysis of the line broadening, the line
shift, and the disappearance of the line emission corresponding to the
ionization potential depression (IPD) of the upper level. The IPD is of
great interest for applications in thermodynamics and also for the
understanding of various radiative properties, such as emission, ab-
sorption, and scattering (for further reading on current developments
in IPD research with spectroscopic precision, the interested reader is
referred to Refs. 50 and 51 and references therein).

The fundamental origin of the perturbation of energy levels is the
plasma electric microfield, which in turn also limits the number of
bound states. Electric field ionization starts at a critical field strength
Fcrit given by39,52

Fcrit ≈ 6.83 108
Z3
eff

n4F
[V/cm], (6.1)

where Zeff is the effective ion charge and nF is the principal quantum
number at which field ionization starts. To estimate the limited
number of quantum states that effectively take part in the re-
combination process, we identify the critical field strength Fcrit with
the mean field strength, which can be expressed in terms of the
Holtsmark normal mean field strength F0 (ZP is the perturber charge
and NP is the perturber density),

52a

Fmean ≈ 3.41F0 � 3.43 4π
4
15

( )2/3 Ry

e
( )a0ZPN

2/3
P

≈ 1.3310−6ZPN
2/3
P [cm−3][V/cm], (6.2)

and we identify the principal quantum number nFwith themaximum
principal quantum number of the spectator electron nl of the
autoionizing configuration, i.e.,

nF ≈ nspectatormax ≈ 4.83 103
Z3/4
eff

Z1/4
P N1/6

P (cm−3). (6.3)

nspectatormax limits the contribution of high-n spectator electrons
according to Eq. (3.17) [and therefore effectively limits the Bd values
in Eqs. (3.14), (3.15), and .(3.20)]. Equation (6.3) is useful to un-
derstand the various effects that limit DR (apart from the electric field
effect, kinetic effects, for example, may likewise limit the effective rate
coefficient; see below). Note, however, that Eq. (6.3) itself provides
only a rough estimate of the principal quantum number of the
spectator electrons due to the electric field effect, since (a) it neglects
the fact that usually up to five perturber charge states are present in
a dense plasma, (b) the field strength distribution is only taken into
account via themean field value, and (c) charged-particle correlations
that influence the field strength distribution itself are ignored.

Effective DR is not only limited by the maximum principal
quantum number nspectatormax from Eq. (6.3), but also by collisional
disintegration of the autoionizing level: in fact, in a dense plasma, not
only does the high density of charged particles result in a high
microfield, but the high density also implies a significant rate of
collisional processes. For autoionizing states, we need to consider two
stages: a first stage involving collisional processes associated with core
relaxation and a second stage following core relaxation. Concerning
the first stage, we need to compare the radiative stabilization rate of
the autoionizing configuration (which is the origin of effective re-
combination) with the collisional ionization rate of the spectator
electron (which is the origin of collisional disintegration of the
autoionizing level). Therefore, effective DR requires

Arad(α→ α0)≫ neIn , (6.4)

whereArad(α→α0) is the radiative stabilization rate fromEqs. (3.10) and
(3.20) (note that this rate is distinctly different from the radiative
transition rate of the spectator electron itself), ne is the electron density,
and In is the electron collisional ionization rate coefficient of the
spectator electron with principal quantum number n. Note that for
autoionizing states, the stabilization rate is almost independent of the
high-n spectator electron, which is distinctly different from the scaling
law for singly excited states (approximately A } 1/n3). If the radiative
stabilization is associated with a change in principal quantum number,
then the H-like approximation can be used to estimate Arad(α → α0):

Arad α→ α0,Δn> 0( ) ≈ 1.573 1010Z4
eff

nα0n3α(n2α − n2α0)
[s−1], (6.5)

where Zeff is the effective ion charge. IfArad(α→ α0) is associated with
a transitionwithout change in principal quantumnumber, i.e.,Δn� 0,
then numerical Hartree–Fock calculations including angular-mo-
mentum coupling are required to obtain reasonable estimates of the
transition probability. Numerical calculations indicate that for Li-like
and Be-like ions, transition probabilities and oscillator strengths can
be roughly estimated from the expressions

Arad(1s22p 2P→ 1s22s 2S) ≈ 1.23108(Zn − 3) (s−1),
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f(1s22s 2S→ 1s22p 2P) ≈ 1.2/(Zn − 2),

Arad(1s22s2p 1P→ 1s22s2 1S) ≈ 83108(Zn − 3) [s−1],

f(1s22s2 1S→ 1s22s2p 1P) ≈ 4.5/(Zn − 2).
The ionization rate of the spectator electron can be estimated from the
following expression (note that there are many competing formulas
available in the literature,26 but for the present estimates, the simple
Lotz-like formula appears to provide a good balance between com-
plexity and precision):

In ≈ 63 10−8
Ry

En
( )3/2 ��

βn

√
e−βn ln 1 + 0.562 + 1.4βn

βn(1 + 1.4βn)
[ ] [cm3/s],

(6.6)

where Ry � 13.6056 eV and

βn �
En

kTe
. (6.7)

En is the ionization potential of the spectator electron, which can be
approximated by

En ≈
(Zeff − 1)2Ry

n2
. (6.8)

It is important to point out that the condition (6.4) is necessary
for DR to be effective, but it is not sufficient. After radiative sta-
bilization α → α0 of the core, we need to radiatively stabilize the
spectator electron nl to the ground state “gr” (if it disappears in
the continuum, no recombination is encountered), i.e., we
must have

Arad(nl→ gr)≫ neIn. (6.9)

For spectator electrons, Δn � 0 transitions are not relevant and an
expression similar to Eq. (6.5) describes all cases of practical
interest:

Arad(nl→ gr,Δn> 0) ≈ 1.573 1010(Zeff − 1)4
ngrn3(n2 − n2gr)

[s−1]. (6.10)

Whether condition (6.4) or (6.9) is more stringent depends on the
type of core transition. Let us consider as an example a magnetically
confined deuterium fusion plasma containing Li-like iron impurities.
Assuming ZP � 2, NP � 1013 cm−3, ne � 1014 cm−3, and kTe � 10 keV,
we obtain from Eq. (6.3) with Zeff � 24 a maximum principal
quantum number of spectator electrons of about nspectatormax ≈ 300. For
Li-like iron, DR is associated with the core transition α0→ α� 1s22s 2S
→ 1s22p 2P with Arad(1s

22p 2P → 1s22s 2S) ≈ 3.5 3 109 s−1 and
f (1s22s 2S → 1s22p 2P) ≈ 0.066. As the relevant principal quantum
numbers are of the order of 100, we have

βn �
En

kTe
� (24− 1)2313.6

104n2
≈ 10−4,

and we can approximate the βn-dependent terms in Eq. (6.6) roughly
by 0.1 and solve Eq. (6.4) for the critical principal quantumnumber of
the spectator electron nspectatorcrit [note that the critical principal

quantum number is obtained from Eq. (6.4) with equality
sign]: nspectatorcrit ≈ (73 1021/ne)1/3 ≈ 400.

Let us now investigate the condition (6.9). For Li-like iron,
ngr � 2 and Eq. (6.10) provides roughly Arad(nl → gr, Δn > 0) ≈ 2
3 1015/n5 [s−1]. Taking into account the n dependence of Arad(nl →
gr, Δn > 0), we can solve Eq. (6.9) for the critical principal quantum
number nspectatorcrit [note that the critical principal quantum number is
obtained from Eq. (6.10) with equality sign] of the spectator electron:
nspectatorcrit ≈ (431023/ne)1/8 ≈ 16. Therefore, in the above example, the
condition (6.10) is much more stringent than conditions (6.3)
and (6.4).

Let us now consider the above example for parameters typical of
inertial fusion plasmas. We assume that iron is employed as a -
diagnostic tracer element in a compressed dense plasma. Assuming
ZP � 2, NP � 1023 cm−3, ne � 1025 cm−3, and kTe � 10 keV, we obtain
from Eq. (6.3) with Zeff � 24 a maximum principal quantum number
of the spectator electron of about nspectatormax ≈ 6. As before, α0 → α �
1s22s 2S→ 1s22p 2PwithArad(1s

22p 2P→ 1s22s 2S) ≈ 3.53 109 s−1 and
f (1s22s 2S → 1s22p 2P) ≈ 0.066. As the relevant principal quantum
numbers are of the order of 10, we have

βn �
En

kTe
� (24− 1)2 3 13.6

104n2
≈ 10−2,

and we can approximate the βn-dependent terms in Eq. (6.6) roughly
by 0.4 and solve Eq. (6.4) for the critical principal quantumnumber of
the spectator electron nspectatorcrit [note that the critical principal
quantum number is obtained from Eq. (6.4) with equality sign]:
nspectatorcrit ≈ (231021/ne)1/3 < 1. Therefore, DR associated with the Li-
like core transition α0 → α � 1s22s 2S → 1s22p 2P is ineffective. The
essential physical reason is related to the low transition probability for
the Δn � 0 core transition. Therefore, total recombination rates are
effectively related to core transitions involving the K shell because, in
this case, the radiative decay rates are very large owing to the strong Z
scaling [see Eq. (6.5)]: assuming Zeff � 24 as before, but taking nα0 � 1
and nα � 2 in Eq. (6.5), we haveArad(α→ α0, Δn > 0) ≈ 1.13 1014 s−1,
i.e., a value five orders of magnitude higher compared with theΔn � 0
core transition discussed above. In this case, K-electron involvement
in a core transition allows a few principal quantum numbers of the
order of 1 to survive and to contribute effectively to DR.

What is the conclusion from the above estimates? They indicate
that it might not be appropriate to adopt a purely atomic structure
point of view to obtain convergence of the sumofDR rates over a large
range of principal quantum numbers of the spectator electron nl in
Eq. (3.17): owing to microfields and collisional–radiative competi-
tion, large principal quantum numbers might not effectively con-
tribute to the total DR rate. Therefore, total DR rates calculated with
rather approximate methods (quasiclassical methods or Vainshtein’s
simplified QMMC method) but taking into account the plasma
microfield and collisional processes might be more accurate than
purely adopting sophisticated atomic structure calculations.

In view of these results, we now address the influence of the
plasma microfield itself on the autoionization rates.

B. Perturbed autoionization rates

The influence of the electric field on the autoionization and
corresponding DR rates was first studied in Refs. 53–55 in the context
of the simplest atomic system of He-like autoionizing states 2l2l′. It
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was realized that forbidden autoionizing processes (i.e., forbidden in
the LS-coupling scheme) become allowed by electric field mixing of
autoionizing bound-state wavefunctions. The allowed autoionization
width is given by the first-order transition rate

Γ(d→ c) � 2π
Z

∣ 〈d ∣V∣c〉 ∣ 2δ(Ed −Ec), (6.11)

where V is the electrostatic interaction. Because V is a scalar op-
erator, the autoionization vanishes unless there are available ad-
jacent continuum states c with the same angular momentum and
parity as those of the discrete levels d.32 Because of the absence of
even-parity P states below the second ionization threshold, the
2p2 3P-state of He-like ions is metastable against autoionization
decay. In the presence of perturbing electric fields, however,
autoionization of the state a � 2p2 3P may occur by a second-order
process involving a field-induced transition to the nearby auto-
ionizing state d � 2s2p 3P. In a quasistatic ion field, the field-induced
autoionization rate is given by

Γ(a→ c) � 2π
Z

∣∣∣∣∣∣∣∣∣∣�d
〈a ∣ Q

→ · E→ ∣ d〉〈d ∣ V ∣ c〉
(Ea −Ed) + iZ(Γd + Ad)/2

∣∣∣∣∣∣∣∣∣∣
2

δ(Ea −Ec), (6.12)

where Q
→

is the electric dipole moment operator, and Γd and Ad are
respectively the autoionization and radiative widths of the state d.
Therefore, the first-order contribution from the field-induced tran-
sition decays directly into the nonresonant continuum c � 1sεp 3P.

It should be noted that for practical applications, not only field-
induced transitions have to be considered, but intermediate coupling,
configuration, and magnetic interactions too. In particular for highly
charged ions, these “non-electric-field effects” may make a consid-
erable contribution to the forbidden autoionization width, as is
demonstrated by the results in Table VI, which have been calculated
using the FAC code.56 In addition, the Breit interaction56a induces an
autoionization rate for the 2p2 3P1 state.

Table VI also illustrates the general effect that if the nuclear
charge increases, then the autoionization widths are more evenly
distributed over the levels. Therefore, electric field effects are best
studied for low-Z elements. The table also demonstrates that auto-
ionization rates are strongly dependent on LSJ quantum numbers:
therefore, simple summations over l quantum numbers might be
a quite inappropriate way to simplify complex atomic structures in
kinetics.48

From the relationship between the corresponding capture and
autoionization rates, it follows that the electric field can induce DR
through normally inaccessible high-angular-momentum states that

have large statistical weights.54,55 In fact, in a plasma, the angular
momentum l is no longer a good quantum number, because the
presence of an electric field destroys the spherical symmetry. How-
ever, the projection LZ of L

⃗
, which generates the magnetic quantum

number m, defined with respect to the direction of the electric field,
remains a good quantum number. For nonzero quantum numbersm,
this results in a twofold degeneracy of the outer electrons in addition
to the twofold degeneracy due to spin. The appropriate trans-
formation of the field-free substates l has the form

∣nλm〉 � �
n−1

l� ∣ m ∣
∣nlm〉〈nlm, ∣nλm〉〉, (6.13)

where the electric quantumnumber λ, which replaces l in the presence
of the electric field, can take integer values in the range λ � 0, . . ., n −
|m| − 1. Calculations54,55,57,58 demonstrate that the dependence of the
autoionization rates on the quantum number λ is rather smooth, in
contrast to the field-free case, where the autoionization rates decrease
rapidly with quantum number l. For this reason, dielectronic capture
increases in the presence of an electric field, because it is proportional
to the autoionization rate and the statistical weight:
〈DC〉Z+1,Zk,j }gZ

j ΓZ,Z+1jk . Because the DR rate is proportional to die-
lectronic capture rate [see Eq. (2.7)], this results in a considerable
increase in the total DR rate. For example, for the autoionizing states
1s22pnl in Be-like Fe22+, an approximately threefold increase in the
DR rate was found even for densities as low as 1014 cm−3.54 This
dramatic increase at rather low densities is connected in particular
with the fact that for the 1s22pnl configuration, the resonance
spontaneous transition probability 2s–2p is not very large and high-n
states have autoionization rates larger than radiative decay rates for n
quantum numbers up to about 100. Consequently, high-n states
contribute considerably to the DR rate. As high-n states are likewise
strongly affected by rather small electric fields, a considerable impact
on the total recombination rate is encountered even for rather low
plasma densities (being of importance for typical densities of the solar
corona or magnetic fusion plasmas).

Interaction with an electric field makes atomic structure cal-
culations extremely complex, and it is difficult to derive general
conclusions. However, it has been demonstrated57,58 that the qua-
siclassical approach combined with a transformation to parabolic
quantum numbers [Eq. (6.13)] gives results that are in surprisingly
good agreement with those of extremely complex numerical calcu-
lations.59 Moreover, the quasiclassical approach combined with the
transformation to parabolic quantum numbers59a,59b enables the
derivation of a closed-form expression for the autoionization rate in
an electric field:

TABLE VI. Field-free autoionization decay rates (s−1) including intermediate coupling, configuration, and magnetic interaction.

State Zn � 3 Zn � 6 Zn � 13 Zn � 18 Zn � 26 Zn � 42

2p2 1S0 8.4 3 1010 5.1 3 1012 1.3 3 1013 1.9 3 1013 3.4 3 1013 7.0 3 1013

2p2 1D2 1.5 3 1014 2.5 3 1014 3.1 3 1014 3.1 3 1014 2.3 3 1014 2.1 3 1014

2p2 3P0 2.9 3 107 2.3 3 109 2.3 3 1011 1.2 3 1012 3.7 3 1012 2.8 3 1012

2p2 3P1 0 0 0 0 0 0
2p2 3P1 with Breit interaction 2.6 3 107 6.8 3 108 1.9 3 1010 7.2 3 1010 3.2 3 1011 2.2 3 1012

2p2 3P2 1.1 3 109 3.1 3 1010 3.0 3 1012 2.1 3 1013 1.1 3 1014 1.5 3 1014
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Γ(n, λ, m) � ∫lmax

lmin

P(nl; λm)Γ(nl) dl, (6.14)

with

l2min �
1
2
{[(n− 1)2 +m2 − λ2]

−
����������������������������
[(n− 1)2 +m2 − λ2]2 − 4(n− 1)2m2

√ } (6.15)

and

l2max �
1
2
{[(n− 1)2 +m2 − λ2]

+
����������������������������
[(n− 1)2 +m2 − λ2]2 − 4(n− 1)2m2

√ }, (6.16)

where Γ(nl) is the standard autoionization rate in spherical polar
coordinates (which is independent ofm owing to spherical symmetry)
andP(nl; λm) is a joint probability (with normalization equal to unity)
for the appearance of spherical (nl) and parabolic (nλm) quantum
numbers that can be expressed in terms of Clebsch–Gordan co-
efficients. For large quantumnumbers and the conditionm< l « n (the
quasiclassical limit of Clebsch–Gordan coefficients that is of practical
interest), the joint probability can be approximated by58

P(nl; λm) ≈ 1
π

2l����������������
(l2 − l2min)(l2max − l2)

√ . (6.17)

Substituting quasiclassical values for the autoionization
rate31,32,36,38,42 Γ(nl) into Eq. (6.14) and using Eq. (6.13), we obtain an
autoionization rate in parabolic quantumnumbers expressed in terms
of universal functions (t � l/leff, leff � (3Z2/ω)1/3):

Γ(n, λ, m) � fij

πn3
I(tmin, tmax), (6.18)

I(tmin, tmax) ≈ 2
lmax

3Z2

ω
( )2/3

Y lmin(ω/3Z2)1/3( ), (6.19)

Y(x) ≈ 0.284 exp(−2x3), (6.20)

where fij is the oscillator strength of the core transition with charge Z
(e.g., the oscillator strength corresponding to the transition 1s–2p in
H-like Al for the He-like 2lnl′ satellites, Z � 13). The expressions
(6.14)–(6.20) demonstrate similarly a broad distribution over the
electric quantumnumber λ that finally results in an increase of theDR
rate.

VII. THE LOCAL PLASMA FREQUENCY APPROACH
TO DIELECTRONIC RECOMBINATION

As discussed already, DR is the most effective recombination
channel in electron–heavy-ion collisions. Owing to the complex
electronic structure of multielectron ions, providing a proper account
of all necessary channels is a very difficult task, in particular for open-
shell configurations. In addition, in dense plasmas, dielectronic

capture might effectively proceed from excited states (see also
Sec. IV), thus considerably increasing the number of quantum
channels for dielectronic capture. Moreover, in heavy ions, numerous
metastable statesmay play the role of excited states even in rather low-
density plasmas, thereby increasing the numerical complexity of fully
quantum calculations considerably. At present, DR of heavy ions is
still a matter of controversy and is one of the main sources of dis-
crepancy between different methods of calculation for radiation loss
and ionic charge state distributions. It is therefore of great interest to
develop different methods for the calculation of the DR rate in heavy
ions that permit more general studies, including analysis of scaling
laws. Below, we develop a twofold statistical approach that is realized
by a combination of the statistical theory of atoms60–65 with the local
plasma frequency approximation.40,41,66

Let us start from Eq. (3.4) and rewrite the formula for the total
DR rate as

〈DR(Te)〉 � 4πRy
kTe

( )3/2

3a30
gf

gi
A�

n,l

Γ(n, l)
A + Γ(n, l) exp −

Zω

kTe
+ Z2

i Ry

n2kTe
( )[ ],

(7.1)

where kTe is the electronic temperature in eV, gi and gf are the sta-
tistical weights of the initial and final states of the atomic core,A is the
radiative transition probability inside the core, Γ is the autoionization
decay rate of an excited atomic energy level, ℏω is the transition energy
inside the core, Zi is the ion charge, a0 is the Bohr radius, and n and l
are the principal and orbital quantum numbers, respectively, of the
captured electron. The radiative decay rate is expressed simply in
terms of the oscillator strength fij for the transition inside the core:

A � 2ω2fif

c3
, (7.2)

where c is the speed of light. To obtain an expression for the auto-
ionization decay rate Γ(n, l), we use a relationship between the decay
rate Γ(n, l) and the partial electron excitation cross section σex(n, l) in
the semiclassical representation. The quantities Γ(n, l) and σex(n, l)
describemutually inverse processes, so the relationship between them
can be obtained from the detailed balance between ions XZi+1 and XZi .
Thus, we obtain

(2l + 1)gfΓ(n, l) � Z2

n3
ωgi

σex(n, l)
π2a20

. (7.3)

The electron excitation cross section in the semiclassical approxi-
mation takes the form

σex(n, l) � 8π
3

Z

mVe
( )2gf

gi
fifZ

−2
i (l + 1

2
)2G ω(l + 1

2)3
3Z2

i

( ), (7.4)

where the function G(u) is given by

G(u) � u[K2
1/3(u) +K2

2/3(u)], (7.5)

where K1/2 and K3/2 are the Macdonald functions (modified Bessel
functions of the second kind). Taking into account that the essential
values of the argument of the functionG(u) are never close to zero, it is
possible to replace G(u) by its asymptotic expansion:
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G(u) ≈ 3.4 exp(−2u). (7.6)

With these approximations, the autoionization decay rate takes the
form

Γ(n, l) ≈ 0.72
ω(l + 1

2
)fij

n3
exp −

2ω(l + 1
2)3

3Z2
i

[ ]. (7.7)

The sum of the absorption oscillator strengths satisfies the Tho-
mas–Reiche–Kuhn sum rule, i.e.,

Ne ��
f

fif (7.8)

(note that Ne is the number of electrons, while ne is the electron
density and n the principal quantum number). In the statistical
model, the oscillator strengths are expressed in terms of the atomic
electron density ne(r, q, Zn), and the statistical sum rule is given by

Ne � ∫ ne(r, q, Zn) dV. (7.9)

The application of the semiclassical statistical model to the general
formula (7.1) for the total DR is achieved by using the relationships

�
f

fif → ∫r0

0
dr 4πr2ne(r, q, Zn) (7.10)

and

Eif →ω �
������������
4πne(r, q, Zn)

√
. (7.11)

After all the substitutions, we obtain for the DR rates

〈DR[cm3/s]〉 � 0.613 10−8〈DR(a.u.)〉, (7.12)

〈DR(a.u.)〉 � 54.5

T3/2
e

Zn

Zi
( )2 ∫x0

0

dx x2 φ(x, q)
x

[ ]9/4

3 ∫∞
1

dt exp −
ω(x)
Te

1−
1
t2

( )[ ]

3 ∫lmax�tn1−1

0

dl
(l + 1

2
)exp[−2ω(x)(l + 1

2)3/3Z2
i ]

t3 + A(x, l) , (7.13)

A(x, l) � 5.23 106(l + 1
2
) exp[−2ω(x)(l + 1

2)3/3Z2
i ]

Z3
i

�����
ω(x)√ , (7.14)

ω(x) � 1.2Zn
φ(x, q)

x
[ ]3/4, (7.15)

with Te[a.u.] � Te[eV]/27.21 and t � n/n1, where n1 is the minimum
possible quantum number. n1 is the lowest level at which electron
capture is possible and corresponds to an energy of an incident
electron Ei, given by

Ei � ω−
Z2
i

2n2
, (7.16)

that is equal to zero, i.e.,

0 � ω−
Z2
i

2n21
, (7.17)

from which it follows that

n1 � Zi���
2ω

√ . (7.18)

In the framework of the Thomas–Fermi model,60–65 the electron
density distribution of a particular element and charge state is
given by

ne(x, q, Zn) � 32
9π3

Z2
n

φ(x, q)
x

[ ]3/2, (7.19)

with
x � r

rTF
, (7.20)

rTF � 9π3

128
( )1/3 1

Z1/3
n

� 0.8853Z−1/3
n , (7.21)

q � Z

Zn
, (7.22)

where Zn is the nuclear charge, Z is the ion charge, q characterizes the
degree of ionization, and rTF is the Thomas–Fermi radius. The
Thomas–Fermi function φ(x, q) can be approximated by the Som-
merfeld method61,62,67 as an exact particular solution of the Tho-
mas–Fermi differential equation:

φ(x, q) � φ0(x) 1−
1 + z(x)
1 + z0(x)[ ]λ1/λ2⎧⎨⎩ ⎫⎬⎭, (7.23)

with

z(x) � x

1443/2
( )λ2 , (7.24)

z0(x) � x0(q)
1443/2

[ ]λ2 , (7.25)

φ0(x) �
1

1 + z(x)[ ]λ1/2 , (7.26)

λ1 � 0.5 7 + ��
73

√( ) � 7.77200, (7.27)

λ2 � 0.5 −7 + ��
73

√( ) � 0.77200. (7.28)

The reduced radius x0(q) is determined from the boundary condition

x0
dφ(x0)
dx

� −q. (7.29)
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In a high-temperature plasma, i.e., when the degree of ionization
q � Z/Zn is not too low, the reduced radius can be approximated by

x0(q) �
2.96

1− q
q

( )2/3

if 0.2< q≤ 1,

6.84
1
q3

if q< 0.05.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(7.30)

Note that the use of the Thomas–Fermimodel described above, which
ignores exchange corrections, is quite appropriate within the
framework of the approximations of the statistical DR model itself
(see also the further discussion below). The ionization energy of an
atom or ion is then given by

IZ � Z2
nRy

128
9π2( )1/3 2Z

Z5/3
n x0(q, Zn){ }. (7.31)

As can be seen from Eq. (7.31), the hydrogenic approximationZ2
nRy of

the ionization potential of an ion with charge Zn is corrected via the
Thomas–Fermi electron density distribution, which depends on the
nuclear and ionic charges [the factor in braces {· · ·} in Eq. (7.31)]. A
comparison of the ionization energies obtained from Eq. (7.31) with the
results of detailed Hartree–Fock calculations shows reasonable agree-
ment for heavy elements over a wide range of degrees of ionization.66

Note that more accurate descriptions of the ionization potentials can
certainly be obtained from a direct fit to the vast number of ionization
potentials that are known as functions of Z and Zn:

68

IZ ≈ 0.221Ry
(1 + Z)4/3

1− 0.96
1 + Z

Zn
( )0.257 . (7.32)

Many modifications of the Thomas–Fermi model have been
proposed with the aim of including shell structure, obtaining
improved ionization energies, and, in particular, approaching the
Hartree–Fock results for the electron density distribution. In
further developments to improve the statistical approach, how-
ever, one must not lose sight of the requirement that the funda-
mental equations of the statistical model of atoms, including the
various corrections terms, should not be too complicated, in
particular no more complicated than the basic equations of the
quantum mechanical many-body approximation (e.g., the mul-
ticonfiguration Hartree–Fock methods). One must always bear in
mind that the statistical theory of atoms is only a rough ap-
proximation of the quantum atom and that its advantage is its
extreme simplicity both in structure and application to determine
the electron and potential distributions of atoms, to derive ele-
mentary processes in collisional–radiative regimes, to shed light on
detailed atomic structure calculations (in particular for heavy
atoms), and, in particular, to derive general scaling laws that could
hardly be obtained otherwise. It is this practical philosophy that we
adopt when we consider Eqs. (7.19)–(7.31) for the statistical
framework of the atom/ion and its realization via the local plasma
frequency.

In the simplest version of the statistical model, the atomic
density, excitation energies, and oscillator strengths do not depend on
the orbital momentum quantum number l. If we average the
branching factor over orbital momentum l, i.e.,

�
n,l

Γ(n, l)
A + Γ(n, l),

then we obtain for the total DR rate

〈DR(a.u.)〉 � 39.2

T3/2
e

Zn

Zi
( )2

Zn

Z2
i

∫x0
0

dx x2 φ(x)
x

[ ]3

3 ∫∞
1

dt

t2
exp −

ω(x)
T

1−
1
t2

( )[ ]

3 ∫tn1
0

dl
(l + 1

2)2exp[−2ω(x)(l + 1
2)3/3Z2

i ]
t3 + A(x, l) , (7.33)

where the functionA(x, l) is given by Eqs. (7.14) and (7.15). Instead of
averaging over the branching factor, wemay investigate averaging the
autoionization decay rate Γ(n, l) from Eq. (7.7) over the orbital
quantum number, i.e.,

〈WA(n, l)〉 � 1.7
fifZ

2
i

πn5ω
. (7.34)

For the corresponding total DR rate, we then obtain

〈DR(a.u.)〉 � 0.863102

T3/2
e

Zn

Zi
( )2 ∫x0

0
dx x2 φ(x, q)

x
[ ]9/4

3∫∞

1
dt

exp −
1.2Z
Te

φ(x, q)
x

[ ]3/4 1−
1
t2

( )⎧⎨⎩ ⎫⎬⎭
t5 + A(x) ,

(7.35)

A(x) � 4.563106

Z3
i

���
Zn

√ φ(x, q)
x

[ ]3/8 .

For heavy ions, the quantum mechanical level-by-level calcu-
lations are very complex and have so far been carried out mainly for
closed-shell configurations. Only recently have open-shell configu-
rations also been considered.69,70 In open-shell configurations (e.g.,
the open 4p, 4d, and 4f shells, or even higher ones such as the 5p, 5d, 5f,
and 5g shells), excitation–autoionization channels are very complex,
and the overall completeness of quantum mechanical level-by-level
calculations should still be considered with care. Analysis shows that
order-of-magnitude disagreements can be expected at low temper-
atures, while at high temperatures, different level-by-level quantum
mechanical models differ by about a factor of 2, and the Bur-
gess–Mertz approach32 may deviate by many orders of magnitude
and also gives an entirely inadequate temperature dependence, as
demonstrated by more detailed calculations.71

Below, we compare the different approaches with detailed
quantummechanical level-by-level calculations of theDR rates. Figure 3
shows the total DR rates of xenon Xe26+ and gold Au51+ (the Ni-like
3s23p63d10 configuration into which dielectronic capture proceeds)
calculated with the l-averaged statistical model from Eqs. (7.33)–(7.35)
that employs the Thomas–Fermi model of Eqs. (7.19)–(7.31), the
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Burgess–Mertz formula fromEqs. (3.10)–(3.15), and the quantum level-
by-level calculations from Ref. 71.

The statisticalmodel compares quite well (within a factor of two)
over a very large temperature interval until very low temperatures,
while the Burgess approach entirely fails to describe the total DR rate
of heavy ions. Similar observations are made for other isoelectronic
sequences. Figure 4 shows a comparison of the results from the
different approaches for the DR rates of Sr-like (4s24p64d2) and Zn-
like (4s2) tungsten W36+ and W44+, respectively.70

It is particularly impressive that the statistical model provides
a rather good approximation of the total DR rate in the low-tem-
perature region that is numerically exceedingly difficult to treat by
fully quantum mechanical level-by-level calculations. Thus, the
statistical model in its simplest version seems to provide even the
possibility of estimating the order-of-magnitude correctness of very
complex quantum level-by-level calculations. Moreover, it should be
remembered that currently even the most sophisticated quantum
level-by-level calculations70 have been performed only in the low-
density limit (the coronal model: a low-density limit in which three-
body recombination may be entirely neglected), where the branching
factors are entirely determined by radiative and autoionization decay

rates while dielectronic capture proceeds from the respective ground
states of the various charge states only. In high-density plasmas,
however, as discussed above, collisional depopulation is due to
electron collisional ionization or collisional transfer to other levels. In
addition, excited states are highly populated, and very efficient
channels of DRmay proceed from these. Thismay entirely change the
properties of the total DR rate, because dielectronic capture into
excited states can be even more important than the corresponding
capture to the ground state. This effect has been explicitly confirmed
by high-resolution X-ray spectroscopy of dense laser-produced
plasmas, where it has been shown that DR into excited states can
exceed by many orders of magnitude the corresponding DR into
ground states.23,45 For high-Z elements and openM, N, and O shells,
excited states might be highly populated even at rather moderate
electron densities. Therefore, all current detailed quantum level-by-
level calculations to determine the DR rate have to be considered with
care for each particular application. In this respect, the properties and
the innovation potential of the statistical model look very advanta-
geous for the determination of total DR rates for heavy elements.

Finally, it should be noted that the inclusion of more levels in the
detailed quantum mechanical level-by-level calculations may not

FIG. 4. Comparison of the l-averaged statistical approach with the Burgess and quantum level-by-level calculations for the Sr-like sequence 4s24p64d2 of W36+ and the Zn-like
sequence 4s2 of tungsten W44+.

FIG. 3. Comparison of the l-averaged statistical approach with the Burgess and quantum level-by-level calculations for the Ni-like sequence 3s23p63d10 of Xe26+ and Au51+.
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necessarily result only in an increase in the DR rate, but can also lead
to a decrease, as discussed in Sec. III. Therefore, at present, the simple
statistical method as presented above compares quite well with other
available much more complex methods of calculation and has the
advantages of generality and ease of application. In addition, there is
much room for improvement to the statistical model via improve-
ments to the Thomas–Fermi model (ionization energies, l-quantum-
number dependence, adopting the Vlasov approach instead of the
local plasma frequency etc.).

VIII. CONCLUSION

Dielectronic recombination (DR) can be cast as a product of
dielectronic capture and a probability for radiative stabilization of
the excited core followed by radiative decay of the spectator electron
to the ground state. In the limiting case of negligible collisions
compared with radiative decay, the total DR rate is a function of
atomic structure constants only; i.e., the DR rate is a function of
radiative decays, Auger rates, energy levels, statistical weights, and
temperature. The quantum mechanical multichannel coupling
(QMMC) approach demonstrates that the Burgess theory (in-
cluding the Burgess–Mertz formulas) of DR may overestimate
higher-order contributions by orders of magnitude. Collisional
processes are identified to havemultiple impacts on DR: (a) electron
collisional excitation drives excited-state couplings that are often
even more important than ground-state contributions; (b) angular-
momentum-changing collisions between autoionizing states change
the effective core relaxation and induce DR rates that are dependent
on density—an effect that manifests itself in a perturbation of the
spectral distribution of dielectronic satellite spectra; (c) collisional
ionization of the spectator electron reduces high-n contributions to
DR if ionizations are more frequent than radiative stabilizations of
the core and the spectator electron. The plasma microfield strongly
influences high-n DR contributions via ionization potential de-
pression and perturbations of the spherical symmetry of auto-
ionization matrix elements. Approximate calculations of DR rates,
such as the quasiclassical method and Vainshtein’s approximate
QMMC approach (which allows treatment of very large quantum
numbers without convergence problems) combined with atomic
population kinetic effects (excited-state-driven DR, angular-mo-
mentum-changing collisions, ionization potential depression, and
collisional ionization of the spectator electron before radiative re-
laxation) are identified as providing effectively higher precision for
the total DR rate than pure atomic structure calculations (even
though the latter aremore sophisticated). Finally, the first steps have
been undertaken in a statistical approach to DR that is based on the
local plasma frequency approximation rather than on standard
atomic structure calculations. Quite good agreement with the most
advanced quantum mechanical calculations so far available have
been obtained, opening up a new field of activity for the plasma atom
approach. Moreover, as DR has an impact on all ionization balance
calculations, an accurate treatment of DR is mandatory and
therefore remains an active and important field of research in atomic
physics. On the other hand, spectroscopic diagnostics based on
dielectronic satellite transitions provide a unique characterization of
very complex phenomena and therefore contribute considerably to
advances in many different areas of atomic and plasma physics.
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